Quadratic Convergence for Valuing American Options Using a Penalty Method

نویسندگان

  • Peter A. Forsyth
  • Kenneth R. Vetzal
چکیده

The convergence of a penalty method for solving the discrete regularized American option valuation problem is studied. Sufficient conditions are derived which both guarantee convergence of the nonlinear penalty iteration and ensure that the iterates converge monotonically to the solution. These conditions also ensure that the solution of the penalty problem is an approximate solution to the discrete linear complementarity problem. The efficiency and quality of solutions obtained using the implicit penalty method are compared with those produced with the commonly used technique of handling the American constraint explicitly. Convergence rates are studied as the timestep and mesh size tend to zero. It is observed that an implicit treatment of the American constraint does not converge quadratically (as the timestep is reduced) if constant timesteps are used. A timestep selector is suggested which restores quadratic convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic Convergence of a Penalty Method for Valuing American Options∗

The convergence of a penalty method for solving the discrete regularized American option valuation problem is studied. Sufficient conditions are derived which both guarantee convergence of the nonlinear penalty iteration and ensure that the iterates converge monotonically to the solution. These conditions also ensure that the solution of the penalty problem is an approximate solution to the dis...

متن کامل

A penalty method for American options with jump diffusion processes

The fair price for an American option where the underlying asset follows a jump diffusion process can be formulated as a partial integral differential linear complementarity problem. We develop an implicit discretization method for pricing such American options. The jump diffusion correlation integral term is computed using an iterative method coupled with an FFT while the American constraint i...

متن کامل

Adaptive and high-order methods for valuing American options

We develop space-time adaptive and high-order methods for valuing American options using a partial differential equation (PDE) approach. The linear complementarity problem arising due to the free boundary is handled by a penalty method. Both finite difference and finite element methods are considered for the space discretization of the PDE, while classical finite differences, such as Crank-Nico...

متن کامل

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

Monte Carlo methods for the valuation of multiple exercise options

We discuss Monte Carlo methods for valuing options with multiple exercise features in discrete time. By extending the recently developed duality ideas for American option pricing we show how to obtain estimates on the prices of such options using Monte Carlo techniques. We prove convergence of our approach and estimate the error. The methods are applied to options in the energy and interest rat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2002